3.4.80 \(\int \frac {\text {sech}^2(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx\) [380]

Optimal. Leaf size=160 \[ \frac {E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{(a-b) f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {b F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{a (a-b) f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}} \]

[Out]

(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2
))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/(a-b)/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)-b*(1/(1+sinh(f*x+
e)^2))^(1/2)*(1+sinh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*
(a+b*sinh(f*x+e)^2)^(1/2)/a/(a-b)/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3271, 425, 21, 433, 429, 506, 422} \begin {gather*} \frac {\text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{f (a-b) \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {b \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{a f (a-b) \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sech[e + f*x]^2/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

(EllipticE[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/((a - b)*f*Sqrt[(Sech[e
+ f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) - (b*EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*
Sinh[e + f*x]^2])/(a*(a - b)*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 425

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1
)*(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomi
alQ[a, b, c, d, n, p, q, x]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 433

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[a, Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Dist[b, Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[
d/c] && PosQ[b/a]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 3271

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2
)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ
[p]

Rubi steps

\begin {align*} \int \frac {\text {sech}^2(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx &=\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {1}{\left (1+x^2\right )^{3/2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=\frac {\sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{(a-b) f}+\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {b+b x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{(-a+b) f}\\ &=\frac {\sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{(a-b) f}+\frac {\left (b \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {1+x^2}}{\sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{(-a+b) f}\\ &=\frac {\sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{(a-b) f}+\frac {\left (b \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{(-a+b) f}+\frac {\left (b \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{(-a+b) f}\\ &=-\frac {b F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{a (a-b) f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{(-a+b) f}\\ &=\frac {E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{(a-b) f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {b F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{a (a-b) f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.72, size = 159, normalized size = 0.99 \begin {gather*} \frac {2 i a \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} E\left (i (e+f x)\left |\frac {b}{a}\right .\right )-2 i (a-b) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} F\left (i (e+f x)\left |\frac {b}{a}\right .\right )+\sqrt {2} (2 a-b+b \cosh (2 (e+f x))) \tanh (e+f x)}{2 (a-b) f \sqrt {2 a-b+b \cosh (2 (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sech[e + f*x]^2/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

((2*I)*a*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] - (2*I)*(a - b)*Sqrt[(2*a - b + b
*Cosh[2*(e + f*x)])/a]*EllipticF[I*(e + f*x), b/a] + Sqrt[2]*(2*a - b + b*Cosh[2*(e + f*x)])*Tanh[e + f*x])/(2
*(a - b)*f*Sqrt[2*a - b + b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]
time = 2.08, size = 131, normalized size = 0.82

method result size
default \(\frac {\sqrt {-\frac {b}{a}}\, b \left (\sinh ^{3}\left (f x +e \right )\right )-b \sqrt {\frac {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right )+\sqrt {-\frac {b}{a}}\, a \sinh \left (f x +e \right )}{\left (a -b \right ) \sqrt {-\frac {b}{a}}\, \cosh \left (f x +e \right ) \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}\, f}\) \(131\)
risch \(\text {Expression too large to display}\) \(4985\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

((-1/a*b)^(1/2)*b*sinh(f*x+e)^3-b*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)*(-
1/a*b)^(1/2),(a/b)^(1/2))+(-1/a*b)^(1/2)*a*sinh(f*x+e))/(a-b)/(-1/a*b)^(1/2)/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(
1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sech(f*x + e)^2/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 576 vs. \(2 (180) = 360\).
time = 0.10, size = 576, normalized size = 3.60 \begin {gather*} -\frac {{\left ({\left (2 \, a - b\right )} \cosh \left (f x + e\right )^{2} + 2 \, {\left (2 \, a - b\right )} \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + {\left (2 \, a - b\right )} \sinh \left (f x + e\right )^{2} - 2 \, {\left (b \cosh \left (f x + e\right )^{2} + 2 \, b \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + b \sinh \left (f x + e\right )^{2} + b\right )} \sqrt {\frac {a^{2} - a b}{b^{2}}} + 2 \, a - b\right )} \sqrt {b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} - a b}{b^{2}}} - 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} - a b}{b^{2}}} - 2 \, a + b}{b}} {\left (\cosh \left (f x + e\right ) + \sinh \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} - 8 \, a b + b^{2} + 4 \, {\left (2 \, a b - b^{2}\right )} \sqrt {\frac {a^{2} - a b}{b^{2}}}}{b^{2}}) - 2 \, {\left ({\left (2 \, a - b\right )} \cosh \left (f x + e\right )^{2} + 2 \, {\left (2 \, a - b\right )} \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + {\left (2 \, a - b\right )} \sinh \left (f x + e\right )^{2} + 2 \, a - b\right )} \sqrt {b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} - a b}{b^{2}}} - 2 \, a + b}{b}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} - a b}{b^{2}}} - 2 \, a + b}{b}} {\left (\cosh \left (f x + e\right ) + \sinh \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} - 8 \, a b + b^{2} + 4 \, {\left (2 \, a b - b^{2}\right )} \sqrt {\frac {a^{2} - a b}{b^{2}}}}{b^{2}}) - \sqrt {2} {\left (b \cosh \left (f x + e\right ) + b \sinh \left (f x + e\right )\right )} \sqrt {\frac {b \cosh \left (f x + e\right )^{2} + b \sinh \left (f x + e\right )^{2} + 2 \, a - b}{\cosh \left (f x + e\right )^{2} - 2 \, \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + \sinh \left (f x + e\right )^{2}}}}{{\left (a b - b^{2}\right )} f \cosh \left (f x + e\right )^{2} + 2 \, {\left (a b - b^{2}\right )} f \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + {\left (a b - b^{2}\right )} f \sinh \left (f x + e\right )^{2} + {\left (a b - b^{2}\right )} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

-(((2*a - b)*cosh(f*x + e)^2 + 2*(2*a - b)*cosh(f*x + e)*sinh(f*x + e) + (2*a - b)*sinh(f*x + e)^2 - 2*(b*cosh
(f*x + e)^2 + 2*b*cosh(f*x + e)*sinh(f*x + e) + b*sinh(f*x + e)^2 + b)*sqrt((a^2 - a*b)/b^2) + 2*a - b)*sqrt(b
)*sqrt((2*b*sqrt((a^2 - a*b)/b^2) - 2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 - a*b)/b^2) - 2*a + b)/b
)*(cosh(f*x + e) + sinh(f*x + e))), (8*a^2 - 8*a*b + b^2 + 4*(2*a*b - b^2)*sqrt((a^2 - a*b)/b^2))/b^2) - 2*((2
*a - b)*cosh(f*x + e)^2 + 2*(2*a - b)*cosh(f*x + e)*sinh(f*x + e) + (2*a - b)*sinh(f*x + e)^2 + 2*a - b)*sqrt(
b)*sqrt((2*b*sqrt((a^2 - a*b)/b^2) - 2*a + b)/b)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 - a*b)/b^2) - 2*a + b)/
b)*(cosh(f*x + e) + sinh(f*x + e))), (8*a^2 - 8*a*b + b^2 + 4*(2*a*b - b^2)*sqrt((a^2 - a*b)/b^2))/b^2) - sqrt
(2)*(b*cosh(f*x + e) + b*sinh(f*x + e))*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^
2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2)))/((a*b - b^2)*f*cosh(f*x + e)^2 + 2*(a*b - b^2)*f*cosh(f
*x + e)*sinh(f*x + e) + (a*b - b^2)*f*sinh(f*x + e)^2 + (a*b - b^2)*f)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {sech}^{2}{\left (e + f x \right )}}{\sqrt {a + b \sinh ^{2}{\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(f*x+e)**2/(a+b*sinh(f*x+e)**2)**(1/2),x)

[Out]

Integral(sech(e + f*x)**2/sqrt(a + b*sinh(e + f*x)**2), x)

________________________________________________________________________________________

Giac [A]
time = 0.48, size = 282, normalized size = 1.76 \begin {gather*} \frac {2 \, {\left (\frac {\arctan \left (-\frac {\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b} + \sqrt {b}}{2 \, \sqrt {a - b}}\right ) e^{\left (-2 \, e\right )}}{\sqrt {a - b}} - \frac {2 \, {\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b} - \sqrt {b}\right )} e^{\left (-2 \, e\right )}}{{\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )}^{2} + 2 \, {\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )} \sqrt {b} + 4 \, a - 3 \, b}\right )} e^{\left (3 \, e\right )}}{f^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

2*(arctan(-1/2*(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e) + 4*a*e^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) +
 b) + sqrt(b))/sqrt(a - b))*e^(-2*e)/sqrt(a - b) - 2*(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e) + 4*a*e
^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) + b) - sqrt(b))*e^(-2*e)/((sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*
e) + 4*a*e^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) + b))^2 + 2*(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e) +
 4*a*e^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) + b))*sqrt(b) + 4*a - 3*b))*e^(3*e)/f^2

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\mathrm {cosh}\left (e+f\,x\right )}^2\,\sqrt {b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(e + f*x)^2*(a + b*sinh(e + f*x)^2)^(1/2)),x)

[Out]

int(1/(cosh(e + f*x)^2*(a + b*sinh(e + f*x)^2)^(1/2)), x)

________________________________________________________________________________________